
1

Packaging Java
Applications for Ubuntu

Arun Gupta
Sun Microsystems, Inc.
http://blogs.sun.com/arungupta

1

Packaging Java Applications for Ubuntu 2

Who am I ?

• Member of Project GlassFish team
• GlassFish Evangelist
• With Sun for over 8 years
• Specifications, Engineering, Standards,

Interoperability, ...
• http://blogs.sun.com/arungupta

Packaging Java Applications for Ubuntu 3

Packaging Java Applications
for Ubuntu
Tap into the fastest-growing Linux users community

Learn how to package your Java
Applications to deliver into Ubuntu

Packaging Java Applications for Ubuntu 4

Packaging Java Applications
for Ubuntu
• Introduction to Ubuntu
• Introduction to Ubuntu Packages
• Releasing a Java Application into Ubuntu

> Use Case: Releasing GlassFish
• Lessons Learned

Packaging Java Applications for Ubuntu 5

Packaging Java Applications
for Ubuntu
• Introduction to Ubuntu
• Introduction to Ubuntu Packages
• Releasing a Java Application as a Package

> Use Case: Releasing GlassFish
• Lessons Learned

Packaging Java Applications for Ubuntu 6

What is Ubuntu ?

• Favorite Linux distribution since 2005 according to
http://distrowatch.com/

• Based on Debian GNU/Linux
• Strong desktop and notebook offering focusing on

> Usability
> Localization
> Accessibility

• Solid server platform (including port to SPARC)
• Commercially supported by Canonical and others

http://distrowatch.com/

Packaging Java Applications for Ubuntu 7

An incredibly active community
• Over 13,000 active members of local community teams
• Over 2 million forum posts by 200,000 forum members
• 2006 - Over 4 million users in just over 2 years

Packaging Java Applications for Ubuntu 8

Packaging Java Applications
for Ubuntu
• Introduction to Ubuntu
• Introduction to Ubuntu Packages
• Releasing a Java Application into Ubuntu

> Use Case: Releasing GlassFish
• Lessons Learned

Packaging Java Applications for Ubuntu 9

How is software distributed ?

• Software in the Ubuntu archive organized into four
sections (aka “repositories”)

main restricted

universe multiverse

Supported

Non-Supported

 Free Non-Free

Core

MOTU

Packaging Java Applications for Ubuntu 10

How is software distributed ?
Licensing

• Software in the Main or Universe component must be
Free/Open Source
> Example F/OSS licenses : GPL, BSD, CDDL

• Software that is not Free/Open Source, but still fully
redistributable, can go into Multiverse

• Package with build or runtime dependencies in Multiverse
can only go in Multiverse

• Exception possible for documentation, media file and
firmware (decided on a case-by-case basis)

Packaging Java Applications for Ubuntu 11

What a developer needs to know about Ubuntu packages
Debian packages explained

• Based on the Debian .deb package format
• Essentially :

> Files (binaries, libraries, doc, etc.)
> Metadata (Dependencies, Description, etc)
> “Maintainer” scripts

The purpose : providing Free/Open Source software
(usually distributed as source) to the user in an easy
to install and maintain fashion

Packaging Java Applications for Ubuntu 12

Requirements and Policies
Debian packages explained

• Ubuntu packaging policy largely based on Debian:
http://www.debian.org/doc/debian-policy/

In a nutshell :
• Software can be built from source (with some

exceptions)
• Runtime and build dependencies must be specified

(and have to be fulfilled within a section)
• Respect of the FHS is non-negotiable

> http://www.pathname.com/fhs/

Packaging Java Applications for Ubuntu 13

Debian packages explained
Source package

Components :
• .dsc : source package meta-data
• .orig.tar.gz : pristine source of the software
• .diff.gz : local packaging modifications in “patch”

format (including the debian/ directory)

Packaging Java Applications for Ubuntu 14

Debian packages explained
Content of a minimal debian/ directory

• debian/control: package meta-data
• debian/copyright: copyright, license and

attributions
• debian/changelog: packaging history
• debian/rules: package build Makefile

Packaging Java Applications for Ubuntu 15

Debian packages explained
Maintainer scripts

• Action to be taken on package installation, upgrade
and removal – scripted.
> preinst / postinst : prior and after installation
> prerm / postrm : prior and after removal

• No user interaction (except through debconf)

Packaging Java Applications for Ubuntu 16

Debian packages explained
Packaging tools

• debhelper : automating common task in the rules file
> Examples : dh_installdocs, dh_fixperms
> Start your Debianization with dh_make

• CDBS : An abstraction layer above debhelper
> Make very short debian/rules file
> Automatically do the right thing for the common case

• devscripts package has nice-to-have tools

Packaging Java Applications for Ubuntu 17

Packaging Java Applications
for Ubuntu
• Introduction to Ubuntu
• Introduction to Ubuntu Packages
• Releasing a Java Application as a Package

> Use Case: Releasing GlassFish
• Lessons Learned

Packaging Java Applications for Ubuntu 18

What is Project GlassFish?
Use Case: Project GlassFish

• 100% Open Source Java EE 5 Application Server
• Source donated by Sun Microsystems and Oracle

Corporation (TopLink Essentials)
• GlassFish v2 current stable release.

> CDDL/GPL v2 with Classpath Exception
• High Availability, Clustering, .NET interoperability, ...
• Community at http://glassfish.java.net

> Wikis, Bugs, Architecture Docs, Roadmap, ...

Packaging Java Applications for Ubuntu 19

GlassFish Highlights
• Metro: Web services stack

> Java API for XML Web Services (JAX-WS)
> Interoperability with .NET 3.0

• Web Tier: Grizzly, Java Server Pages, Servlets
• Java Persistence: TopLink Essentials
• Rich Clients: Ajax and Java Web Starts

> Jmaki, JavaFX
• Enterprise Quality Management and Clustering
• NetBeans and Eclipse integration

Packaging Java Applications for Ubuntu 20

GlassFish v3
• Small (<100 KB)
• Fast (starts up < 1 sec)
• Modular (load the required container)
• Ideal for Web 2.0 applications
• Will be Java EE 6 compatible
• Scheduled in 2009

> Technology Preview available

Packaging Java Applications for Ubuntu 21

Packaging Java Applications
Identifying pre-requisites

• Decide number of packages on following criteria
> Platform specific binaries
> Licensing requirements of sub-components

• Choose your License
> License has an impact on the choice of repository

• Identify repository to deliver to
• Identify your dependencies

> Build time dependencies
> Run time dependencies

Packaging Java Applications for Ubuntu 22

Packaging GlassFish
Identifying pre-requisites for GlassFish

• Decide number of packages
> glassfish, glassfish-bin, sunwderby, imq

• Choose your License
> GlassFish v2 – CDDL

• Identify repository to deliver to
> Multiverse (Non-free but redistributable)
> Based on dependency on sun-java5-jre and license

• List your dependencies
> Build Dependencies: devscripts, dh_make,sun-java5-jdk,

sun-java5-jre
> Run-time Dependencies: sun-java5-jre

Packaging Java Applications for Ubuntu 23

Packaging Java Applications
Tools to package Java Applications.

• Use dh_make to debianize a regular source archive
> Creates default debian files like control, rules, changelog

• Use debuild (from devhelper package)
> Modify rules file to write build rules.
> Modify control to define runtime dependencies for your

package.
> Modify prerm, preinst to add preinstallation scripts.
> Modify postrm, postinst to add postinstallation scripts.

Packaging Java Applications for Ubuntu 24

Packaging GlassFish: Build Files

#Control File
Source: glassfish
Section: devel
Priority: optional
Maintainer: Harpreet Singh <harpreet.singh@sun.com>
Build-Depends: debhelper (>= 5.0.0)
Standards-Version: 3.7.2

Package: glassfish
Architecture: all
Depends: sunwderby (>= ${Source-Version}), imq (>=
${Source-Version}), sun-java5-jre, glassfish-bin (>=
${Source-Version})

Description: Sun's open source Java EE 5 Application
Server.

Packaging Java Applications for Ubuntu 25

Packaging GlassFish: Build Files

#Rules File
Build architecture-independent files here.
binary-indep: build install
build:
 # Add here commands to compile the package.
 $(MAKE)
install:

 # Install the package into debian/glassfish.
 $(MAKE) install DESTDIR=$(CURDIR)/debian/glassfish

Packaging Java Applications for Ubuntu 26

Installing and Testing Packages
Tools to install packages

• dpkg -i *.deb
• Setup your own trivial repository

> Create meta-data that describes source, packages
– dpkg-scanpackages, dkpg-scansources

> Add your repository under /etc/apt/sources.list
> Refresh your repository list: sudo apt-get update

• Fetch packages with apt-get
> sudo apt-get glassfish

Packaging Java Applications for Ubuntu 27

Post Build: Uploading to Ubuntu
Tools to upload packages

• Sign your packages
> Generate your gpg key
> Upload key to Ubuntu keyservers
> Sign your package: debsign -k key_id

• Upload to Ubuntu servers
> Revu (http://revu.tauware.de)
> Use dput to upload to Ubuntu servers

• Receive feedback, make changes and upload.

http://revu.tauware.de/

Packaging Java Applications for Ubuntu 28

Packaging Java Applications
for Ubuntu
• Introduction to Ubuntu
• Introduction to Ubuntu Packages
• Releasing a Java Application as a Package

> Use Case: Releasing GlassFish
• Lessons Learned

Packaging Java Applications for Ubuntu 29

Lessons learned
Tips and caveats about packaging for Ubuntu

• Break the software into discrete components
> Unbundle useful libraries, think re-usability!

• Have the software licensing figured out
> Be careful when incorporating third-party project into

yours, and give credit where it's due
• Introducing a new package requires all build

dependencies to be packaged
• Don't sidestep the system tools

> Software with their own built-in update mechanism are
discouraged

Packaging Java Applications for Ubuntu 30

Lessons Learned
Tips and caveats about packaging for Ubuntu

• Don't rely on graphical setup tools for installation
> But it is ok for runtime configuration

• Don't include .jar and .class in source package
> Does the package build from source?

• Building package for software using Ant is easier,
thanks to CDBS

Packaging Java Applications for Ubuntu 31

Lessons Learned
Deciding where to distribute your Ubuntu package
The Ubuntu archive
• Universe/Multiverse

> Maintained by community teams
> Become a member of the MOTUs!

– https://wiki.ubuntu.com/MOTU/Hopeful/Recruitment
> Have the benefits of team work and use of Launchpad

• Commercial
> Reserved for Canonical ISV partners
> Complete control over your packages

Slightly problematic: hosting .deb packages outside of
the archive (on your own host)

Packaging Java Applications for Ubuntu 32

Lessons Learned
Final Thoughts

• Packaging for Ubuntu is non-trivial, but worth it
> Do the right thing for your users
> Widen the audience for your software dramatically

• Contributors welcome
> Ubuntu - a community where you can make a difference
> GlassFish – a community where you can build open

source Java EE Application Server.

Packaging Java Applications for Ubuntu 33

Summary

• Figure out licensing requirements
• Choose a repository to upload packages
• Use system provided tools to debianize your sources
• Test and Upload
• Join the communities

> http://www.ubuntu.com
> https://glassfish.java.net

34

Packaging Java
Applications for Ubuntu

Arun Gupta
Sun Microsystems, Inc.
http://blogs.sun.com/arungupta

34

