Tag Archives: jenkins

Deployment Pipeline using Docker, Jenkins, Java and Couchbase

This blog explains how to create a Deployment Pipeline using Jenkins and Docker for a Java application talking to a database.

Jenkins support the creation of pipelines. They are built with simple text scripts that use a Pipeline DSL (domain-specific language) based on the Groovy programming language.

The script, typically called Jenkinsfile, defines multiple steps to execute both simple and complex tasks according to the parameters that you establish. Once created, pipelines can build code and orchestrate the work required to drive applications from commit to delivery.

A pipeline consists of steps, node and stage. A pipeline is executed on a node – a computer that is part of Jenkins installation. A pipeline often consists of multiple stages. A stage consists of multiple steps. Read Getting Started with Pipeline for more details.

For our application, here is the basic flow:

docker-pipeline-jenkins

Complete source code for the application used is at github.com/arun-gupta/docker-jenkins-pipeline.

The application is defined in the webapp directory. It opens a connection to the Couchbase database and stores a simple JSON document using Couchbase Java SDK. The application also has a test that verifies that the database indeed contains the document that was persisted.

Many thanks to @alexsotob for helping me with Jenkins configuration.

Let’s get started!

Download and Install Jenkins

  • Download Jenkins from jenkins.io. This was tested with Jenkins 2.21.
  • Start Jenkins:
    This command starts Jenkins by specifying the home directory where all the configuration information is stored. It also defines the port on which Jenkins is listening, 9090 in this case.
  • First start of Jenkins shows the following message in the console:
    Copy the password shown here. This will be used to unlock Jenkins.
  • Access the Jenkins console at localhost:9090 and paste the password:docker-pipeline-jenkins-unlockClick on Next.
  • Create the first admin user as shown:
    docker-pipeline-jenkins-create-admin-user
    Click on Save and Finish.
  • Click on Install suggested plugins:docker-pipeline-jenkins-install-suggested-plugins
    A bunch of default plugins are installed:docker-pipeline-jenkins-installing-suggested-plugins
    Found it surprising that Ant and Subversion are the default plugins.
  • Login screen is prompted.
    docker-pipeline-jenkins-login
    Enter the username and password specified earlier.
  • Finally, Jenkins is ready to use:
    docker-pipeline-jenkins-start-using

That’s quite a bit of steps to get started with basic Jenkins. Do I really have to jump through all these hoops to get started with Jenkins? Is there an easier, simpler, dumber, lazier way to start Jenkins? Follow Convention-over-Configuration and give me one-click pre-configured installation.

Install Jenkins Plugins

Install the required plugins in Jenkins.

  1. If your Java project is built using Maven, then you need to configure Maven in Jenkins. Click on Manage Jenkins, Global Tool Configuration, Maven installations, and specify the location of Maven.docker-pipeline-jenkins-configure-maven
    Name the tool as Maven3 as that is the name used in the configuration later.Again a bit lame, why can’t Jenkins pick up the default location of Maven instead of expecting the user to specify a location.
  2. Click on Manage Jenkins, Manage Plugins, Available tab, search for docker pipe. Select CloudBees Docker Pipeline, click on Install without restart.
    docker-pipeline-jenkins-pipeline-plugin
    Click on Install without restart.Docker Pipeline Plugin plugin understands the Jenkinsfile and executes the commands listed there.
  3. Next screen shows the list of plugins that are installed:docker-pipeline-jenkins-pipeline-plugin-restart-jenkins
    The last line shows that CloudBees Docker Pipeline plugin is installed successfully. Select Restart Jenkins checkbox. This will install restart Jenkins as well.

Create Jenkins Job

Let’s create a job in Jenkins that will run the pipeline.

  1. After Jenkins restarts, it shows the login screen. Enter the username and password created earlier. This brings you back to Installing Plugins/Upgrades page. Click on the Jenkins icon in the top left corner to see the main dashboard:docker-pipeline-jenkins-dashboard
  2. Click on create new jobs, give the name as docker-jenkins-pipeline and choose the type as Pipeline:docker-pipeline-jenkins-create-projectClick on OK.
  3. Configure Pipeline as shown:
    docker-pipeline-jenkins-configure-pipelineLocal git repo is used in this case. You can certainly choose a repo hosted on github. Further, this repo can be configured with a git hook or poll at a constant interval to trigger the pipeline.Click on Save to save the configuration.

Run Jenkins Build

Before you start the job, Couchbase database need to be explicitly started as:

This will be resolved after #9 is fixed.  Make sure you can access Couchbase at http://localhost:8091, use Administrator as the login and password as the password. Click on Data Buckets tab and see the books bucket created.

docker-pipeline-couchbase-books

Click on Build Now and you should see an output similar to:

docker-pipeline-jenkins-build-run

All green is good!

Let’s try to understand what happened behind the scene.

Jenkinsfile describes how the pipeline is built. At the top level, it has four stages – Package, Create Docker Image, Run Application and Run Tests. Each stage is shown as a box in Jenkins dashboard. Total time taken for each stage is shown in the box.

Let’s understand what happens in each stage.

  • Package – Application source code lives in the webapp directory. Maven command mvn clean package -DskipTests is used to create a JAR file of the application. Note that the maven project also includes the tests and are explicitly skipped using -DskipTests. Typically, tests would be in a separate downstream project.Maven project creates a far JAR file of the application and includes all the dependencies.
  • Create Docker Image – Docker image of the application is built using the Dockerfile in the webapp directory. The image simply includes the fat JAR and runs it using java -jar.Each image is tagged with the build number using ${env.BUILD_NUMBER}.
  • Run Application – Running the application involves running the application Docker container.IP address of the database container is identified using the docker inspect command.The database container and the application container are both running in the default bridge network. This allows the two containers to communicate with each other. Another enhancement would be to run the pipeline in a swarm mode cluster. This would require to create and use an overlay network.
  • Run Tests – Tests are run against the container using the mvn test command. If the tests pass the image is pushed to Docker Hub. The test results are captured either way.This stage also shows the usage of try/catch/finally block in Jenkinsfile.If the tests pass then the image is pushed to Docker Hub. In this case, it is available at hub.docker.com/r/arungupta/docker-jenkins-pipeline/tags/.

Some TODOs …

  • Move the tests to a downstream project (#7)
  • Use Git hook or poll to trigger pipeline (#8)
  • Automate database startup/shutdown (#9)
  • Run pipeline in a cluster of Docker Engines with Swarm mode (#10)
  • Show alternate configuration to push image to bintray (#11)

Another pain point is that global variables syntax does not seem to be documented anywhere. It is only available at <JENKINS-HOST>:<JENKINS-PORT>/job/docker-jenkins-pipeline/pipeline-syntax/globals. This is again slightly lame!

“not impossible, just not implemented yet” #sadpanda

Some further references to read:

  • Getting Started with the Jenkinsfile
  • CloudBees Docker Pipeline Plugin
  • CloudBees Docker Pipeline Plugin User Guide
  • Jenkinsfile DSL Reference
  • Jenkins Pipeline Talk from JavaZone 2016

More information about Couchbase:

  • Couchbase Developer Portal
  • Couchbase Forums
  • @couchbasedev or @couchbase

Feel free to file bugs at github.com/arun-gupta/docker-jenkins-pipeline/issues or send PR.

Source: blog.couchbase.com/2016/september/deployment-pipeline-docker-jenkins-java-couchbase

Deployment Pipeline for Java EE 7 with WildFly, Arquillian, Jenkins, and OpenShift (Tech Tip #56)

Tech Tip #54 showed how to Arquillianate (Arquillianize ?) an existing Java EE project and run those tests in remote mode where WildFly is running on a known host and port. Tech Tip #55 showed how to run those tests when WildFly is running in OpenShift. Both of these tips used Maven profiles to separate the appropriate Arquillian dependencies in “pom.xml” and <container> configuration in “arquillian.xml” to define where WildFy is running and how to connect to it.

This tip will show how to configure Jenkins in OpenShift and invoke these tests from Jenkins. This will create deployment pipeline for Java EE.

Lets see it in action first!

Configuration required to connect from Jenkins on OpenShift to a WildFly instance on OpenShift is similar to that required for  connecting from local machine to WildFly on OpenShift. This configuration is specified in “arquillian.xml” and we can specify some parameters which can then be defined in Jenkins.

On a high level, here is what we’ll do:

  • Use the code created in Tech Tip #54 and #55 and add configuration for Arquillian/Jenkins/OpenShift
  • Enable Jenkins
  • Create a new WildFly Test instance
  • Configure Jenkins to run tests on the Test instance
  • Push the application to Production only if tests pass on Test instance

Lets get started!

  1. Remove the existing boilerplate source code, only the src directory, from the WildFly git repo created in Tech Tip #55.
  2. Set a new remote to javaee7-continuous-delivery repository:
  3. Pull the code from new remote:
    This will bring all the source code, include our REST endpoints, web pages, tests, updated “pom.xml” and “arquillian.xml”. The updated “pom.xml” has two new profiles.
    Few points to observe here:

    1. “openshift” profile is used when building an application on OpenShift. This is where the application’s WAR file is created and deployed to WildFly.
    2. A new profile “jenkins-openshift” is added that will be used by the Jenkins instance (to be enabled shortly) in OpenShift to run tests.
    3. “arquillian-openshift” dependency is the same as used in Tech Tip #55 and allows to run Arquillian tests on a WildFly instance on OpenShift.
    4. This profile refers to “jenkins-openshift” container configuration that will be defined in “arquillian.xml”.

    Updated “src/test/resources/arquillian.xml” has the following container:

    This container configuration is similar to the one that was added in Tech Tip #55. The only difference here is that the domain name, application name, and the SSH user name are parametrized. The value of these properties is defined in the configuration of Jenkins instance and allows to run the test against a separate test node.

  4. Two more things need to be done before changes can be pushed to the remote repository. First is to create a WildFly Test instance which can be used to run the tests. This can be easily done as shown:

    Note the domain here is milestogo, application name is mywildflytest, and SSH user name is 546e3743ecb8d49ca9000014. These will be passed to Arquillian for running the tests.

  5. Second is to enable and configure Jenkins.In your OpenShift Console, pick the “mywildfly” application and click on “Enable Jenkins” link as shown below:techtip56-enable-jenkinsRemember this is not your Test instance because all the source code lives on the instance created earlier.Provide the appropriate name, e.g. jenkins-milestogo.rhcloud.com in my case, and click on “Add Jenkins” button. This will provision a Jenkins instance, if not already there and also configure the project with a script to build and deploy the application. Note down the name and password credentials.
  6. Use the credentials to login to your Jenkins instance.Select the appropriate build, “mywildfly-build” in this case. Scroll down to the “Build” section and add the following script right after “# Run tests here” in the Execute Shell:

    Click on “Save” to save the configuration. This will allow to run the Arquillian tests on the Test instance. If the tests pass then the app is deployed. If the tests fail, then none of the steps after that step are executed and so the app is not deployed.

  7. Lets push the changes to remote repo now:

    The number of dots indicate the wait for a particular task and will most likely vary for different runs.  And Jenkins console (jenkins-milestogo.rhcloud.com/job/mywildfly-build/1/console) shows the output as:

    Log files for Jenkins can be viewed as shown:

    This shows the application was successfully deployed at mywildfly-milestogo.rhcloud.com/index.jsp and looks like as shown:

    techtip56-mywildfly-output-tests-passing

Now change “src/main/webapp/index.jsp” to show a different heading. And change  “src/test/java/org/javaee7/sample/PersonTest.java” to make one of the tests fail. Doing “git commit” and “git push” shows the following results on command line:

The key statement to note is that deployment is halted after the tests are failing. And you can verify this by revisiting mywildfly-milestogo.rhcloud.com/index.jsp and check that the updated “index.jsp” is not visible.

In short, tests pass, website is updated. And tests fail, the website is not updated. So you’ve built a simple deployment pipeline for Java EE 7 using WildFly, OpenShift, Arquillian, and Jenkins!